Prime and zero distributions for meromorphic Euler products

نویسنده

  • Yasufumi Hashimoto
چکیده

The aim of the present paper is to study the relations between the prime distribution and the zero distribution for generalized zeta functions which are expressed by an Euler products and are analytically continued as meromorphic functions of finite order. In this paper, we give an inequality between the order of the zeta function as a meromorphic function and the growth of the multiplicity in the prime distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero distributions for meromorphic Euler products

The aim of the present paper is to study distributions of singular points of a zeta function which is expressed by an Euler product and is analytically continued as a meromorphic function of finite order. In this manuscript, we give a relation between the growth of the multiplicities for the norms of primitive elements and the order of the zeta function as a meromorphic function.

متن کامل

Growth of meromorphic solutions for complex difference‎ ‎equations of Malmquist type

‎In this paper‎, ‎we give some necessary conditions for a complex‎ ‎difference equation of Malmquist type‎ $$‎sum^n_{j=1}f(z+c_j)=frac{P(f(z))}{Q(f(z))}‎,$$ ‎where $n(in{mathbb{N}})geq{2}$‎, ‎and $P(f(z))$ and $Q(f(z))$ are‎ ‎relatively prime polynomials in $f(z)$ with small functions as‎ ‎coefficients‎, ‎admitting a meromorphic function of finite order‎. ‎Moreover‎, ‎the properties of finite o...

متن کامل

A Compactification and the Euler Characteristic of the Spaces of Real Meromorphic Functions

For any connected component H0 of the space of real meromorphic function we build a compactification N(H0) of the space H0. Then we express the Euler characteristics of the spaces H0 and N(H0) in terms of topological invariants of functions from H0.

متن کامل

Exceptional sets for the derivatives of Blaschke products

is the Nevanlinna characteristic of f [13]. Meromorphic functions of finite order have been extensively studied and they have numerous applications in pure and applied mathematics, e.g. in linear differential equations. In many applications a major role is played by the logarithmic derivative of meromorphic functions and we need to obtain sharp estimates for the logarithmic derivative as we app...

متن کامل

Everywhere Legendre, Everywhere Embedded Vectors over Hyper-Symmetric Subrings

Let us suppose every Riemann, arithmetic, algebraically complex ideal is prime and almost everywhere bijective. In [35, 40], the authors address the integrability of non-holomorphic manifolds under the additional assumption that M̄ ≤ Q . We show that a′ ∈ π. Now we wish to extend the results of [35] to Taylor morphisms. Unfortunately, we cannot assume that there exists a super-Lambert injective,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008